

- used to find sides and angles in non-right triangles

$$
\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}
$$

- use when you have two angles and one side ASA, AAS OR
- two sides and one non-included angle SSA \rightarrow ASS
must have a complete ratio to use law of sines (1) If given two angles, find third (angle sum $=180^{\circ}$)
(2) Set up proportion with angle and corresponding sides.
(3) cross multiply and solve.

$$
\begin{array}{c|c}
\frac{\sin 47}{a}=\frac{\sin 29}{5.6} & \frac{\sin 29}{5.6}=\frac{\sin 104}{c} \\
5.6 \sin 47=a \sin 29 & 5.6 \sin 104=c \sin 29 \\
\frac{5.6 \sin (47)}{\sin (29)}=a & \frac{5.6 \sin 104}{\sin 29}=c \\
11.2=c
\end{array}
$$

Example 2: ASS - One or Two Triangles

One Triangle

* use inverse when finding an angle*
Baseline Proportion

$$
\begin{array}{rlrl}
15 \sin 37 & =20 \sin c & 20 \sin 116.2 & =b \sin 37 \\
\frac{15 \sin 37}{20} & =\sin c & \frac{20 \sin 116.2}{\sin 37} & =b \\
.45136 \ldots & =\sin c & \\
\sin ^{-1}(\text { ANS })=c . & 29.8 & =b \\
26.8=c & &
\end{array}
$$

Therefore $m \angle B=116.2$
(used Δ angle sum)

AMBIGUOUS CASE - when given two sides and a non-included angle, there may

$$
m L A=25 \quad b=11 \quad a=7
$$

Possible Picture possible.

$$
\sin ^{-1}(A N S)=B
$$

$$
\rightarrow 41.6^{\circ}=B
$$ later

$$
113.4=c
$$

Triangle 1
Triangle 2

\checkmark second \triangle
is possible
Because a second Δ is possible, you
now must find the alternate third side

$$
\begin{gathered}
\frac{\sin 25}{7}=\frac{\sin 16.6}{c} \\
7 \sin 16.6=c \sin 25 \\
7 \sin 16.6=c \\
\sin 25 \\
4.7=c
\end{gathered}
$$

A there (2atici
\qquad
\qquad

